Publications by authors named "M Hostert"

Article Synopsis
  • * The study introduces enhanced modeling techniques for neutrino flux and detector response, and it distinguishes between starting (inside) and throughgoing (outside) neutrino interaction events to improve energy resolution.
  • * The findings indicate a best-fit point for the 3+1 model with sin²(2θ_{24})=0.16 and Δm_{41}²=3.5 eV², supporting previous studies while showing consistency with no evidence of sterile neutrinos, as reflected
View Article and Find Full Text PDF

A vector portal between the Standard Model and the dark sector is a predictive and compelling framework for thermal dark matter. Through co-annihilations, models of inelastic dark matter (iDM) and inelastic Dirac dark matter (i2DM) can reproduce the observed relic density in the MeV to GeV mass range without violating cosmological limits. In these scenarios, the vector mediator behaves like a semi-visible particle, evading traditional bounds on visible or invisible resonances, and uncovering new parameter space to explain the muon anomaly.

View Article and Find Full Text PDF

Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements.

View Article and Find Full Text PDF

DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6   6   6 m liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light.

View Article and Find Full Text PDF

A new generation of neutrino experiments is testing the 4.7σ anomalous excess of electronlike events observed in MiniBooNE. This is of huge importance for particle physics, astrophysics, and cosmology, not only because of the potential discovery of physics beyond the standard model, but also because the lessons we will learn about neutrino-nucleus interactions will be crucial for the worldwide neutrino program.

View Article and Find Full Text PDF