IEEE Trans Neural Netw
October 2012
A key question in the design of specialized hardware for simulation of neural networks is whether fixed-point arithmetic of limited numerical precision can be used with existing learning algorithms. An empirical study of the effects of limited precision in cascade-correlation networks on three different learning problems is presented. It is shown that learning can fail abruptly as the precision of network weights or weight-update calculations is reduced below a certain level, typically about 13 bits including the sign.
View Article and Find Full Text PDF