Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling.
View Article and Find Full Text PDFForkhead box O (FoxO) transcription factors (TFs) are key drivers of complex transcriptional programmes that determine animal lifespan. FoxOs regulate a number of other TFs, but how these TFs in turn might mediate the anti-ageing programmes orchestrated by FoxOs in vivo is unclear. Here, we identify an E-twenty six (ETS)-family transcriptional repressor, Anterior open (Aop), as regulated by the single Drosophila melanogaster FoxO (dFOXO) in the adult gut.
View Article and Find Full Text PDFDrosophila melanogaster and Caenorhabditis elegans each carry a single representative of the Forkhead box O (FoxO) family of transcription factors, dFOXO and DAF-16, respectively. Both are required for lifespan extension by reduced insulin/Igf signaling, and their activation in key tissues can extend lifespan. Aging of these tissues may limit lifespan.
View Article and Find Full Text PDFA critical requirement for research using model organisms is a well-defined and consistent diet. There is currently no complete chemically defined (holidic) diet available for Drosophila melanogaster. We describe a holidic medium that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan.
View Article and Find Full Text PDFRNA interference (RNAi) provides an important tool for gene function discovery. It has been widely exploited in Caenorhabditis elegans ageing research because it does not appear to have any non-specific effects on ageing-related traits in that model organism. We show here that ubiquitous, adult-onset activation of the RNAi machinery, achieved by expressing a double stranded RNA targeting GFP or lacZ for degradation, or by increasing expression of Dicer substantially reduces lifespan in Drosophila melanogaster.
View Article and Find Full Text PDF