Publications by authors named "M Hirode"

We discovered a nonpeptidic compound, TAK-070, that inhibited BACE1, a rate-limiting protease for the generation of Abeta peptides that are considered causative for Alzheimer's disease (AD), in a noncompetitive manner. TAK-070 bound to full-length BACE1, but not to truncated BACE1 lacking the transmembrane domain. Short-term oral administration of TAK-070 decreased the brain levels of soluble Abeta, increased that of neurotrophic sAPPalpha by approximately 20%, and normalized the behavioral impairments in cognitive tests in Tg2576 mice, an APP transgenic mouse model of AD.

View Article and Find Full Text PDF

We have constructed a large-scale transcriptome database of rat liver treated with various drugs. In an effort to identify a biomarker for the diagnosis of elevated total bilirubin (TBIL) and direct bilirubin (DBIL), we extracted 59 probe sets of rat hepatic genes from the data for seven typical drugs, gemfibrozil, phalloidin, colchicine, bendazac, rifampicin, cyclosporine A, and chlorpromazine, which induced this phenotype from 3 to 28 days of repeated administration in the present study. Principal component analysis (PCA) using these probes clearly separated dose- and time-dependent clusters in the treated groups from their controls.

View Article and Find Full Text PDF

A large-scale transcriptome database of rat liver (TG-GATEs) has been established by the Toxicogenomics Project in Japan. In the present study, we focused on 8 hepatotoxic compounds within TG-GATEs, i.e.

View Article and Find Full Text PDF

For assessing carcinogenicity in animals, it is difficult and costly, an alternative strategy has been desired. We explored the possibility of applying a toxicogenomics approach by using comprehensive gene expression data in rat liver treated with various compounds. As prototypic non-genotoxic hepatocarcinogens, thioacetamide (TAA) and methapyrilene (MP) were selected and 349 commonly changed genes were extracted by statistical analysis.

View Article and Find Full Text PDF

One expected result from toxicogenomics technology is to overcome the barrier because of species-specific differences in prediction of clinical toxicity using animals. The present study serves as a model case to test if the well-known species-specific difference in the toxicity of coumarin could be elucidated using comprehensive gene expression data from rat in-vivo, rat in-vitro, and human in-vitro systems. Coumarin 150 mg/kg produced obvious pathological changes in the liver of rats after repeated administration for 7 days or more.

View Article and Find Full Text PDF