Publications by authors named "M Hinkhouse"

NAD(P)H:quinone oxidoreductase (NQO1) functions as an important part of cellular antioxidant defense by detoxifying quinones, thus preventing the formation of reactive oxygen species (ROS). The aim of our study was to determine if NQO1 is elevated in pancreatic cancer specimens and pancreatic cancer cell lines and if so, would compounds previously demonstrated to redox cycle with NQO1 be effective in killing pancreatic cancer cells. Immunohistochemistry of resected pancreatic specimens demonstrated an increased immunoreactivity for NQO1 in pancreatic cancer and pancreatic intraepithelial neoplasia (PanIN) specimens versus normal human pancreas.

View Article and Find Full Text PDF

Manganese superoxide dismutase (MnSOD) levels have been found to be low in human pancreatic cancer [Pancreas 26, (2003), 23] and human pancreatic cancer cell lines [Cancer Res. 63, (2003), 1297] when compared to normal human pancreas. We hypothesized that stable overexpression of pancreatic cancer cells with MnSOD cDNA would alter the malignant phenotype.

View Article and Find Full Text PDF

Nad(p)h: quinone oxidoreductase (NQO(1)) catalyzes the two-electron reduction of quinones to hydroquinones. This reaction is believed to prevent the one-electron reduction of quinones that would result in redox cycling with generation of superoxide (O(2)(.-)).

View Article and Find Full Text PDF

Pancreatic cancer has low levels of antioxidant enzymes including manganese superoxide dismutase (MnSOD), which converts superoxide radical (O(2)(*-)) into hydrogen peroxide (H(2)O(2)), and glutathione peroxidase (GPx), which converts H(2)O(2) into water. Recent studies have demonstrated that overexpression of MnSOD has a tumor-suppressive effect in pancreatic cancer. However, GPx overexpression has been shown to reverse the tumor cell growth inhibition caused by MnSOD overexpression in other types of cancer.

View Article and Find Full Text PDF

NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)).

View Article and Find Full Text PDF