Publications by authors named "M Heyl"

Transcranial magnetic stimulation (TMS) triggers time-locked cortical activity that can be recorded with electroencephalography (EEG). Transcranial evoked potentials (TEPs) are widely used to probe brain responses to TMS. Here, we systematically reviewed 137 published experiments that studied TEPs elicited from TMS to the human primary motor cortex (M1) in healthy individuals to investigate the impact of methodological choices.

View Article and Find Full Text PDF

Computing the ground state of interacting quantum matter is a long-standing challenge, especially for complex two-dimensional systems. Recent developments have highlighted the potential of neural quantum states to solve the quantum many-body problem by encoding the many-body wavefunction into artificial neural networks. However, this method has faced the critical limitation that existing optimization algorithms are not suitable for training modern large-scale deep network architectures.

View Article and Find Full Text PDF

Digital quantum simulation relies on Trotterization to discretize time evolution into elementary quantum gates. On current quantum processors with notable gate imperfections, there is a critical trade-off between improved accuracy for finer time steps, and increased error rate on account of the larger circuit depth. We present an adaptive Trotterization algorithm to cope with time dependent Hamiltonians, where we propose a concept of piecewise "conserved" quantities to estimate errors in the time evolution between two (nearby) points in time; these allow us to bound the errors accumulated over the full simulation period.

View Article and Find Full Text PDF

The fission of a string connecting two charges is an astounding phenomenon in confining gauge theories. The dynamics of this process have been studied intensively in recent years, with plenty of numerical results yielding a dichotomy: the confining string can decay relatively fast or persist up to extremely long times. Here, we put forward a dynamical localization transition as the mechanism underlying this dichotomy.

View Article and Find Full Text PDF

We show that certain lattice gauge theories exhibiting disorder-free localization have a characteristic response in spatially averaged spectral functions: a few sharp peaks combined with vanishing response in the zero frequency limit. This reflects the discrete spectra of small clusters of kinetically active regions formed in such gauge theories when they fragment into spatially finite clusters in the localized phase due to the presence of static charges. We obtain the transverse component of the dynamic structure factor, which is probed by neutron scattering experiments, deep in this phase from a combination of analytical estimates and a numerical cluster expansion.

View Article and Find Full Text PDF