Complete insect metamorphosis requires substantial metabolic and physiological adjustments. Although oxidative stress has been implicated in metamorphosis, details on redox metabolism during larva-to-pupa and pupa-to-adult remain scarce. This study explores redox metabolism during metamorphosis of a lepidopteran (), focusing on core metabolism, antioxidant systems and oxidative stress.
View Article and Find Full Text PDFHypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g.
View Article and Find Full Text PDFAerobic organisms have developed a complex system of endogenous antioxidants to manage the reactivity of oxygen and its byproducts [...
View Article and Find Full Text PDFThe upregulation of endogenous antioxidants is a widespread phenomenon in animals that tolerate hypoxia/anoxia for extended periods. The identity of the mobilized antioxidant is often context-dependent and differs among species, tissues, and stresses. Thus, the contribution of individual antioxidants to the adaptation to oxygen deprivation remains elusive.
View Article and Find Full Text PDFPreparation for oxidative stress (POS) is a widespread adaptive response to harsh environmental conditions, whose hallmark is the upregulation of antioxidants. In contrast to controlled laboratory settings, animals are exposed to multiple abiotic stressors under natural field conditions. Still, the interplay between different environmental factors in modulating redox metabolism in natural settings remains largely unexplored.
View Article and Find Full Text PDF