Fracton order describes novel quantum phases of matter that host quasiparticles with restricted mobility and, thus, lies beyond the existing paradigm of topological order. In particular, excitations that cannot move without creating multiple excitations are called fractons. Here, we address a fundamental open question-can the notion of self-exchange statistics be naturally defined for fractons, given their complete immobility as isolated excitations? Surprisingly, we demonstrate how fractons can be exchanged and show that their self-statistics is a key part of the characterization of fracton orders.
View Article and Find Full Text PDFMotivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector U(1) gauge theories. The fracton order and restricted mobility emerge as a result of an unusual Gauss law where electric field lines of one gauge field act as sources of charge for others. At low energies this vector gauge theory reduces to the previously studied fractonic symmetric tensor gauge theory.
View Article and Find Full Text PDFThe physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4.
View Article and Find Full Text PDFWe consider a class of d- and f-electron systems in which dipolar-octupolar Kramers doublets arise on the sites of the pyrochlore lattice. For such doublets, two components of the pseudospin transform like a magnetic dipole, while the other transforms like a component of the magnetic octupole tensor. Based on a symmetry analysis, we construct and study models of dipolar-octupolar doublets in itinerant and localized limits.
View Article and Find Full Text PDF