Publications by authors named "M Herlyn"

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. A better understanding of the temporal dynamics and specific pathways leading into and out of the persister state is needed to identify strategies to prevent treatment failure. Using spatial transcriptomics in patient-derived xenograft models, we captured clonal lineage evolution during treatment.

View Article and Find Full Text PDF

The goal of this project was to demonstrate that subpopulations of cells in tumors can uniquely fluctuate in size in response to environmental conditions created during drug treatment, thereby acting as a dynamic "rheostat" to create a favorable tumor environment for growth. The cancer modeling used for these studies was subpopulations of melanoma cells existing in cultured and tumor systems that differed in aldehyde dehydrogenase (ALDH) activity. However, similar observations were found in other cancer types in addition to melanoma, making them applicable broadly across cancer.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) play dual roles in tumor progression. TAMs are known to induce programmed death ligand-1 (PD-L1) expression in cancer cells. However, the regulatory effects of PD-L1 in melanoma cells on TAM phenotypical switching remain underexplored.

View Article and Find Full Text PDF

Unlabelled: While a subset of patients with metastatic melanoma achieves durable responses to immune checkpoint blockade (ICB) therapies, the majority ultimately exhibit either innate or acquired resistance to these treatments. However, the molecular mechanisms underlying resistance to ICB therapies remain elusive and are warranted to elucidate. Here, we comprehensively investigated the tumor and tumor immune microenvironment (TIME) of paired pre- and post-treatment tumor specimens from metastatic melanoma patients who were primary or secondary resistance to anti-CTLA-4 and/or anti-PD-1/PD-L1 therapies.

View Article and Find Full Text PDF