Winegrapes exposed to environmental wildfire smoke during ripening can be identified through analysis of volatile phenols and phenolic glycosides. While elevated concentrations of these smoke marker compounds in grapes have been shown to be predictive of composition and smoke flavor in young wines, recent research has demonstrated that not every wine produced from smoke-exposed grapes will inevitably have discernible smoke flavor when assessed as young wine 6 weeks after bottling. This is supported by anecdotal reports from wine producers that wines that do not appear noticeably smoky when young become noticeably smoky during aging.
View Article and Find Full Text PDFThe adsorbents used to remove taint compounds from wine can also remove constituents that impart desirable color, aroma, and flavor attributes, whereas molecularly imprinted polymers (MIPs) are tailor-made to selectively bind one or more target compounds. This study evaluated the potential for MIPs to ameliorate smoke taint in wine via removal of volatile phenols during or after fermentation. The addition of MIPs to smoke-tainted Pinot Noir wine (for 24 h with stirring) achieved 35-57% removal of guaiacol, 4-methylguaiacol, cresols, and phenol, but <10% of volatile phenol glycoconjugates were removed and some wine color loss occurred.
View Article and Find Full Text PDFThe frequency of wildfires has significantly increased in recent years, posing concerns for many grapegrowers and winemakers. Exposure of grapes to smoke can result in wines with notable smoky notes, which in severe cases are described as "smoke tainted". However, smoky aromas in wine are not quality defects but may be considered desirable in some styles of wines, as also widely found and appreciated in many spirits.
View Article and Find Full Text PDFDue to the increasing frequency of wildfires in recent years, there is a strong need for developing mitigation strategies to manage the impact of smoke exposure of vines and occurrence of 'smoke taint' in wine. One plausible approach would be to prevent or inhibit the uptake of volatile phenols from smoke into grape berries in the vineyard. In this study we describe a model system we developed for evaluating under controlled conditions the effectiveness of a range of surface coatings (including existing horticultural sprays) for reducing/preventing the uptake of volatile phenols and their subsequent conversion to phenolic glycosides.
View Article and Find Full Text PDF