As juvenile animals grow, their behavior, physiology, and development need to be matched to environmental conditions to ensure they survive to adulthood. However, we know little about how behavior and physiology are integrated with development to achieve this outcome. Neuropeptides are prime candidates for achieving this due to their well-known signaling functions in controlling many aspects of behavior, physiology, and development in response to environmental cues.
View Article and Find Full Text PDFSynchrotron radiation-namely, electromagnetic radiation produced by charges moving in a curved path-is regularly generated at large-scale facilities where giga-electron volt electrons move along kilometer-long circular paths. We use a metasurface to bend light and demonstrate synchrotron radiation produced by a subpicosecond pulse, which moves along a circular arc of radius 100 micrometers inside a nonlinear crystal. The emitted radiation, in the terahertz frequency range, results from the nonlinear polarization induced by the pulse.
View Article and Find Full Text PDFIn , key developmental transitions are governed by the steroid hormone ecdysone. A number of neuropeptide-activated signaling pathways control ecdysone production in response to environmental signals, including the insulin signaling pathway, which regulates ecdysone production in response to nutrition. Here, we find that the Membrane Attack Complex/Perforin-like protein Torso-like, best characterized for its role in activating the Torso receptor tyrosine kinase in early embryo patterning, also regulates the insulin signaling pathway in We previously reported that the small body size and developmental delay phenotypes of null mutants resemble those observed when insulin signaling is reduced.
View Article and Find Full Text PDFPatterning of the embryonic termini by the Torso (Tor) receptor pathway has long served as a valuable paradigm for understanding how receptor tyrosine kinase signaling is controlled. However, the mechanisms that underpin the control of Tor signaling remain to be fully understood. In particular, it is unclear how the Perforin-like protein Torso-like (Tsl) localizes Tor activity to the embryonic termini.
View Article and Find Full Text PDFSemin Cell Dev Biol
December 2017
The Membrane Attack Complex Perforin-like/Cholesterol-Dependent Cytolysin (MACPF) superfamily is an ancient and biologically diverse group of proteins that are best known for pore-forming roles in mammalian immunity and bacterial pathogenesis. Intriguingly, however, some eukaryotic proteins which contain the MACPF domain that defines this family do not act in attack or defence, and instead have distinct developmental functions. It remains unclear whether these proteins function via pore formation or have a different mechanism of action.
View Article and Find Full Text PDF