Publications by authors named "M Hayles"

The introduction of cryo-techniques to the focused ion-beam scanning electron microscope (FIB-SEM) has brought new opportunities to study frozen, hydrated samples from the field of Life Sciences. Cryo-techniques have long been employed in electron microscopy. Thin electron transparent sections are produced by cryo-ultramicrotomy for observation in a cryo-transmission electron microscope (TEM).

View Article and Find Full Text PDF

The desire to study macromolecular complexes within their cellular context requires the ability to produce thin samples suitable for cryo-TEM (cryo-transmission electron microscope) investigations. In this paper, we discuss two similar approaches, which were developed independently in Utrecht (the Netherlands) and Albany (USA). The methods are particularly suitable for both tissue samples and cell suspensions prepared by a high-pressure freezer (HPF).

View Article and Find Full Text PDF

Objective: To create evidence-based guidelines evaluating foot care interventions for the management of juvenile idiopathic arthritis (JIA).

Data Sources: An electronic literature search of the following databases from database inception to May 2015 was conducted: MEDLINE (Ovid), EMBASE (Ovid), Cochrane CENTRAL, and clinicaltrials.gov.

View Article and Find Full Text PDF

Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs.

View Article and Find Full Text PDF

Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffraction (EBSD), providing the etch features imaged with reflected LM can be retained during EBSD data acquisition in a scanning electron microscope (SEM). Retention of the etch features requires that the ice surface is stable.

View Article and Find Full Text PDF