Background: Pharmacological vitamin C (Vit-C), or high-dose Vit-C has recently gained attention as a potential cancer therapeutic. However, the anticancer activity of Vit-C has not been investigated in realistic 3D models of human cancers, especially with respect to breast cancer (BC), and its potential benefits remain under debate. Herein, we investigate the activity and mechanism of action of pharmacological Vit-C on two BC tumor spheroids.
View Article and Find Full Text PDFBreast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC.
View Article and Find Full Text PDFObjective: Giant cell arteritis (GCA) is a chronic inflammatory condition associated with a significantly increased risk of various cardiovascular and thromboembolic events. Existing studies suggest an increased risk of cardiovascular disease in GCA, but results vary. This meta-analysis aims to quantify the association between GCA and the risk of various cardiovascular outcomes, providing a comprehensive evaluation of the cardiovascular burden in patients with GCA.
View Article and Find Full Text PDFObjectives: To evaluate the effect of different ratios of Bis-EMA/Bis-GMA resin mixtures on the inherent viscosity and curing-related properties: including degree of cure (DC%), shrinkage strain, Knoop micro-hardness (KH) and flexural strength of resin-impregnated fiber-bundles.
Methods: Bis-EMA/Bis-GMA monomers were mixed (by weight) in the following ratios: M1 = 30 %/70 %, M2 = 50 %/50 %, M3 = 70 %/30 %, and M4 = 100 %/0 %. Standard measurements were made of refractive index, viscosity, degree of conversion, shrinkage strain and Knoop hardness (KHN).