Publications by authors named "M Hashinokuchi"

The microstructure of LiNiCoMnO cathode materials was controlled by the addition of lithium silicate, and the influence on the cycle performance and the rate capability was investigated. Si was not included within the lattice, but localized at the grain boundaries of the primary particles and the pores inside the secondary particles. The addition of the lithium silicate greatly decreased the density of the pores between the primary particles and improved the density of the secondary particles.

View Article and Find Full Text PDF

We report results of the segregation induced by the adsorption of O2 and the barrier of the formation of Cu2O in Cu3Au(111) with an experimental and theoretical approach. Oxidation by a hyperthermal O2 molecular beam (HOMB) was investigated by X-ray photoemission spectroscopy in conjunction with a synchrotron light source. From the incident-energy dependence of the measured O-uptake curve, dissociative adsorption of O2 is less effective on Cu3Au(111) than on Cu(111).

View Article and Find Full Text PDF

We report results of our experimental and theoretical studies on the Au concentration profile of Cu3Au(111) during oxidation by a hyperthermal O2 molecular beam at room temperature, using X-ray photoemission spectroscopy (XPS), in conjunction with synchrotron radiation (SR), and density functional theory (DFT). Before O2 exposure, we observe strong Au segregation to the top layer, i.e.

View Article and Find Full Text PDF

We report a study of the surface temperature (T(s)) dependence of Cu(2)O formation on a Cu(110) surface induced by a hyperthermal O(2) molecular beam (HOMB), using x-ray photoemission spectroscopy in conjunction with synchrotron radiation. From the T(s) dependence of the O uptake curves, the direct dissociative adsorption process mainly contributes to the formation of the p(2 × 1)-O structure with an O coverage (Θ) of 0.5 ML for 2.

View Article and Find Full Text PDF

We report a study of kinetics and dynamics in physisorption of CH(3)Cl on a highly-oriented pyrolytic graphite (HOPG). Thermal energy atom scattering (TEAS) was used to probe the kinetics of thermal CH(3)Cl adsorption on HOPG during the coverage evolution. The desorption energy of CH(3)Cl on HOPG changes from 0.

View Article and Find Full Text PDF