Publications by authors named "M Handke"

Lipids are major constituents of food but are also highly relevant substructures of drugs and are increasingly applied for the development of lipid-based drug delivery systems. Lipids are prone to oxidative degradation, thus affecting the quality of food or medicines. Therefore, analytical methods or tools that enable the degree of lipid oxidation to be assessed are of utmost importance to guarantee food and drug safety.

View Article and Find Full Text PDF

Background: Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are used in regenerative medicine and related research involving immunomodulatory, anti-inflammatory, anti-fibrotic and regenerative functions. Isolation of BM-MSCs from samples obtained during total hip arthroplasty (THA) is routinely possible. Advanced age and comorbidities of the majority of patients undergoing THA limit their applicability.

View Article and Find Full Text PDF

Isoreticular chemistry, in which the organic or inorganic moieties of reticular materials can be replaced without destroying their underlying nets, is a key concept for synthesizing new porous molecular materials and for tuning or functionalization of their pores. Here, we report that the rational cleavage of covalent bonds in a metal-organic framework (MOF) can trigger their isoreticular contraction, without the need for any additional organic linkers. We began by synthesizing two novel MOFs based on the MIL-142 family, (In)BCN-20B and (Sc)BCN-20C, which include cleavable as well as noncleavable organic linkers.

View Article and Find Full Text PDF

Increasing the chemical complexity of metal-organic cages (MOCs) or polyhedra (MOPs) demands control over the simultaneous organization of diverse organic linkers and metal ions into discrete caged structures. Herein, we show that a pre-assembled complex of the archetypical cuboctahedral MOP can be used as a template to replicate such caged structure, one having a "triblock Janus-type" configuration that is both heterometallic and heteroleptic.

View Article and Find Full Text PDF

A new inclusion compound consisting of a guanidinium 1,3,5-tri(4-sulfophenyl)benzene (GTSPHB) host framework containing isophorone guests that surround isolated and seemingly inaccessible pockets was amenable to guest exchange with hexafluorobenzene (HFB) through a single crystal-single crystal transformation (SCSCT). Single-crystal X-ray diffraction of intermediate transformation states, from the parent compound GTSPHB·(isophorone)·(methanol) to the final state GTSPHB·(isophorone)·(HFB)·(methanol), indicated a crystal symmetry change from monoclinic to hexagonal prior to full incorporation of HFB. Optical microscopy during the SCSCT revealed the formation of lamellae, which expanded and then coalesced into a single crystal when the phase transformation was complete.

View Article and Find Full Text PDF