Publications by authors named "M Hageman"

Most of the peptide drugs are often delivered subcutaneously. The significant barrier in this type of peptide administration is the high concentration of formulation, which can lead to self-assembly and aggregation. These phenomena can negatively impact the peptide drug's bioavailability, manufacturing, and injectability.

View Article and Find Full Text PDF
Article Synopsis
  • Coronaviruses can originate from animals and cause serious illnesses in both humans and animals, with a key protein called Mac1 playing a role in viral replication and interferon inhibition.
  • Researchers discovered a compound, MCD-628, that inhibits Mac1 but found its effectiveness was limited due to poor permeability.
  • By creating more hydrophobic derivatives, they identified four compounds that successfully inhibited Mac1 and reduced replication of coronaviruses, confirming their specificity through drug-resistance mutations, but this resistance came at a cost to the virus's overall fitness.
View Article and Find Full Text PDF

Cyclodextrin complexation has a potential to modulate the physicochemical properties of peptide drugs. The ability of peptides to form an inclusion complex can be influenced by factors such as size, amino acid sequence of peptide, and the size and charge of the cyclodextrin cavity. In this study, the inclusion complexes of the cyclic peptide drug lanreotide acetate with two common β-cyclodextrin derivatives, Sulfobutyl ether β-CD (SBEβ-CD) and hydroxypropyl β-CD (HPβ-CD) were investigated.

View Article and Find Full Text PDF

There is growing interest in the oral delivery of poorly permeable peptide drugs; however, the effect of biorelevant colloids found in the aqueous gastrointestinal environment on peptide drug solution behavior has been largely understudied. In this work, we detail the molecular level interactions between octreotide, a water-soluble macrocyclic peptide drug, and biorelevant colloids, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Current methods for measuring diffusion coefficients in pharmaceutical labs face limitations, prompting the need for new approaches.
  • This study modifies a UV-Vis spectrometer technique to explore how different dissolution media influence the diffusivity of five small molecules and two proteins.
  • By using a 3D-printed cover for precise measurement, results showed that diffusion coefficients could be accurately obtained, with variations in media affecting small molecules by < 10% and proteins by < 15%, making this method feasible for wider lab application.
View Article and Find Full Text PDF