Publications by authors named "M H van Roosmalen"

The study of somatic mutations in single cells provides insights into aging and carcinogenesis, which is complicated by the dependency on whole-genome amplification (WGA). Here, we describe a detailed workflow starting from single-cell isolation to WGA by primary template-directed amplification (PTA), sequencing, quality control, and downstream analyses. A machine learning approach, the PTA Analysis Toolkit (PTATO), is used to filter the hundreds to thousands of artificial variants induced by WGA from true mutations at high sensitivity and accuracy.

View Article and Find Full Text PDF

Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- and/or radiotherapy. Although t-MN can occur both in adult and childhood cancer survivors, the mechanisms driving therapy-related leukemogenesis likely vary across different ages. Chemotherapy is thought to induce driver mutations in children, whereas in adults pre-existing mutant clones are selected by the exposure.

View Article and Find Full Text PDF

Leukemia is characterized by oncogenic lesions that result in a block of differentiation, whereas phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity.

View Article and Find Full Text PDF

Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of HO released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach.

View Article and Find Full Text PDF

Co-culture of intestinal organoids with a colibactin-producing pksE. coli strain (EcC) revealed mutational signatures also found in colorectal cancer (CRC). E.

View Article and Find Full Text PDF