Publications by authors named "M H Vuillet-Gaugler"

Interactions between hematopoietic precursor cells and their surrounding marrow environment are essential for hematopoietic differentiation. These occur in part through the production of regulatory molecules by marrow stromal cells and their local concentration by components of the extracellular matrix (ECM), but direct cell-cell or cell-matrix contacts are likely to also play an essential role. During the past several years, we have characterized the adhesive properties of human hematopoietic precursor cells on two substrates, marrow fibroblastic ECM and purified plasma fibronectin (Fn).

View Article and Find Full Text PDF

Previous ultrastructural investigations have shown that the erythroblastic island is composed of erythroblasts at different stages of maturation which are intimately associated with a central macrophage. However, it is still unclear at which stage of erythroid differentiation this interaction occurs, mainly because of the lack of purified populations of normal erythroid progenitors [erythroid colony-forming units (CFU-E) and erythroid burst-forming units (BFU-E)] and early precursor cells (proerythroblasts) and because of our limited knowledge of their ultrastructural characteristics. In the present work we analyzed the ultrastructure of CFU-E enriched from normal human bone marrow by avidin-biotin immune rosetting and leukemic blasts of erythroid origin from two patients.

View Article and Find Full Text PDF

Human erythroblastic precursor cells adhere to fibronectin (Fn) but the exact nature of the receptors mediating this interaction has not been characterized. In this study, we report data showing that immature human erythroblasts express the integrins VLA-4 and VLA-5 and that both these molecules act as fibronectin receptors on these cells. We have recently demonstrated that adhesion to Fn of purified human CFU-E and their immediate progeny preproerythroblasts was inhibited by antibodies directed against the human fibronectin receptor (VLA-5).

View Article and Find Full Text PDF

Human erythroblastic progenitors (colony-forming unit-erythroid [CFU-E] and burst-forming unit-erythroid [BFU-E]) have been shown to attach to fibronectin (Fn), a property that might be involved in the local regulation of erythropoiesis. In this study, we have investigated changes in cell attachment to Fn upon terminal erythroid differentiation. We first purified CFU-E from human marrow by avidin-biotin immune rosetting.

View Article and Find Full Text PDF