Objective: COL6A3 may modulate adipose tissue function in obesity and insulin resistance. A role for human adipocytes linking COL6A3 with insulin resistance warrants exploration.
Methods: COL6A3 mRNA in abdominal subcutaneous adipose samples was compared between (1) BMI-matched obese subjects resistant or sensitive to insulin (surgical whole tissue biopsies, n = 30/group), (2) lean/overweight and obese subjects (isolated adipocytes from collagenase-treated surgical biopsies, n = 11/group), (3) developing primary human adipocytes with/without knockdown of the insulin-sensitizing adipogenic gene PPARG (collagenase-treated lipoaspirate, n = 5), and (4) small and large adipocytes from lean/overweight subjects (collagenase-treated surgical biopsies or lipoaspirate, n = 10).
Am J Physiol Endocrinol Metab
January 2014
Repeated attempts to lose weight by temporary dieting may result in weight cycling, eventually further gain of body fat, and possible metabolic adaptation. We tested this with a controlled experiment in C57BL/6J mice subjected to four weight cycles (WC), continuous hypercaloric feeding (HF), or low-fat feeding (LF). To search for genes involved in an adaptive mechanism to former weight cycling and avoid acute effects of the last cycle, the last hypercaloric feeding period was prolonged by an additional 2 wk before euthanization.
View Article and Find Full Text PDFInt J Obes (Lond)
September 2012
Background: Adipose tissue is critical for systemic metabolic health. Identifying key factors regulating adipose tissue function is a research priority. The NR4A subfamily of nuclear receptors (NRs) (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) has emerged as important proteins in different disease states and in the regulation of metabolic tissues, particularly in liver and muscle.
View Article and Find Full Text PDF