DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments.
View Article and Find Full Text PDFThe genus , a group of ciliated protists, has attracted attention as a model organism due to its widespread distribution and ease of cultivation. This study examines the evolutionary patterns of the SSU rRNA secondary structure within this genus, aiming to elucidate its role in supporting evolutionary relationships and uncovering cryptic species. By predicting the secondary structure of SSU rRNA and applying the CBC (Compensatory Base Change) concept analysis, we examined 69 species of the genus , with 57 SSU rRNA gene sequences retrieved from GenBank and 12 newly sequenced specimens from South Korea.
View Article and Find Full Text PDFThis study assessed the therapeutic effectiveness of a single-pill combination (SPC) of olmesartan/amlodipine plus rosuvastatin for blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) in patients with hypertension and dyslipidemia. Adult patients with hypertension and dyslipidemia who were decided to be treated with the study drug were eligible. The primary endpoint was the proportion of patients who achieved BP, LDL-C and both BP and LDL-C treatment goals at weeks 24-48.
View Article and Find Full Text PDFLateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.
View Article and Find Full Text PDFBiosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions.
View Article and Find Full Text PDF