While apoptosis dismantles the cell to enforce immunological silence, pyroptotic cell death provokes inflammation. Little is known of the structural architecture of cells undergoing pyroptosis, and whether pyroptotic corpses are immunogenic. Here we report that inflammasomes trigger the Gasdermin-D- and calcium-dependent eruption of filopodia from the plasma membrane minutes before pyroptotic cell rupture, to crown the resultant corpse with filopodia.
View Article and Find Full Text PDFThe cGAS-STING pathway responds to cytosolic DNA to elicit host immunity to infection. The activation of stimulator of interferon genes (STING) can trigger a number of critical cellular responses including inflammation, noncanonical autophagy, lipid metabolism, senescence, and cell death. STING-mediated immunity through the production of type I interferons (IFNs) and nuclear factor kappa B (NF-κB)-driven proinflammatory cytokines is primarily driven via the effector protein TBK1.
View Article and Find Full Text PDFCurrent coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination.
View Article and Find Full Text PDFDendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined.
View Article and Find Full Text PDFThe generation of bone-marrow-derived dendritic cells is a widely used approach in immunological research to study antigen processing and presentation, as well as T-cell activation responses. However, the initial step of isolating the bone marrow can be time-consuming, especially when larger numbers of precursor cells are required. Here, we assessed whether an accelerated bone marrow isolation method using centrifugation is suitable for the differentiation of FMS-like tyrosine kinase 3 ligand-driven dendritic cells.
View Article and Find Full Text PDF