Publications by authors named "M Gutjahr"

The January 2022 eruption of the Hunga Tonga-Hunga Ha'apai (HTHH) volcano discharged 2,900 teragrams of ejecta, most of which was deposited in the South Pacific Ocean. Here we investigate its impact on the biogeochemistry of the South Pacific Gyre (SPG) using samples collected during the GEOTRACES cruise GP21 in February-April 2022. Surface water neodymium isotopes and rare earth element compositions showed a marked volcanic impact in the western SPG, potentially extending to the eastern region.

View Article and Find Full Text PDF

The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO record spanning the past 66 million years.

View Article and Find Full Text PDF

Background: Blood transfusions are common medical procedures and every age group requires detailed insights and treatment bundles. The aim of this study was to examine the association of anaemia, co-morbidities, complications, in-hospital mortality, and transfusion according to age groups to identify patient groups who are particularly at risk when undergoing surgery.

Methods: Data from 21 Hospitals of the Patient Blood Management Network Registry were analysed.

View Article and Find Full Text PDF

Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg-rafted debris (IBRD) sourced from the Pacific- and Atlantic-facing sectors of West Antarctica.

View Article and Find Full Text PDF

Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382.

View Article and Find Full Text PDF