Methane is a potent greenhouse gas produced during the ruminal fermentation and is associated with a loss of feed energy. Therefore, efforts to reduce methane emissions have been ongoing in the last decades. Methane production is highly influenced by factors such as the ruminal microbiome and host genetics.
View Article and Find Full Text PDFGenetic material from rumen microorganisms can be found within the oral cavity, and hence there is potential in using the oral microbiome as a proxy of the ruminal microbiome. Feed intake (FI) influences the composition of rumen microbiota and might directly influence the oral microbiome in dairy cattle. Ruminal content samples (RS) from 29 cows were collected at the beginning of the study and also 42 d later (RS0 and RS42, respectively).
View Article and Find Full Text PDFBackground: Mitigating the effects of global warming has become the main challenge for humanity in recent decades. Livestock farming contributes to greenhouse gas emissions, with an important output of methane from enteric fermentation processes, mostly in ruminants. Because ruminal microbiota is directly involved in digestive fermentation processes and methane biosynthesis, understanding the ecological relationships between rumen microorganisms and their active metabolic pathways is essential for reducing emissions.
View Article and Find Full Text PDFBackground: Rumen microorganisms carry antimicrobial resistance genes which pose a threaten to animals and humans in a One Health context. In order to tackle the emergence of antimicrobial resistance it is vital to understand how they appear, their relationship with the host, how they behave as a whole in the ruminal ecosystem or how they spread to the environment or humans. We sequenced ruminal samples from 416 Holstein dairy cows in 14 Spanish farms using nanopore technology, to uncover the presence of resistance genes and their potential effect on human, animal and environmental health.
View Article and Find Full Text PDFThe rumen is a complex microbial system of substantial importance in terms of greenhouse gas emissions and feed efficiency. This study proposes combining metagenomic and host genomic data for selective breeding of the cow hologenome toward reduced methane emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain.
View Article and Find Full Text PDF