Publications by authors named "M Guarguaglini"

Understanding materials behaviour under extreme thermodynamic conditions is fundamental in many branches of science, including High-Energy-Density physics, fusion research, material and planetary science. Silica (SiO) is of primary importance as a key component of rocky planets' mantles. Dynamic compression is the most promising approach to explore molten silicates under extreme conditions.

View Article and Find Full Text PDF

An ultrafast x-ray powder diffraction setup for laser-driven dynamic compression has been developed at the LULI2000 laser facility. X-ray diffraction is performed in reflection geometry from a quasi-monochromatic laser-generated plasma x-ray source. In comparison to a transmission geometry setup, this configuration allows us to probe only a small portion of the compressed sample, as well as to shield the detectors against the x-rays generated by the laser-plasma interaction on the front side of the target.

View Article and Find Full Text PDF

Ammonia is predicted to be one of the major components in the depths of the ice giant planets Uranus and Neptune. Their dynamics, evolution, and interior structure are insufficiently understood and models rely imperatively on data for equation of state and transport properties. Despite its great significance, the experimentally accessed region of the ammonia phase diagram today is still very limited in pressure and temperature.

View Article and Find Full Text PDF

Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range.

View Article and Find Full Text PDF

Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets' internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants.

View Article and Find Full Text PDF