Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties.
View Article and Find Full Text PDFSegmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance.
View Article and Find Full Text PDFDefect centers in insulators play a critical role in creating important functionalities in materials: prototype qubits, single-photon sources, magnetic field probes, and pressure sensors. These functionalities are highly dependent on their midgap electronic structure and orbital/spin wave function contributions. However, in most cases, these fundamental properties remain unknown or speculative due to the defects being deeply embedded beneath the surface of highly resistive host crystals, thus impeding access through surface probes.
View Article and Find Full Text PDFEver since the ground-breaking isolation of graphene, numerous two-dimensional (2D) materials have emerged with 2D metal dihalides gaining significant attention due to their intriguing electrical and magnetic properties. In this study, we introduce an innovative approach anhydrous solvent-induced recrystallization of bulk powders to obtain crystals of metal dihalides (MX, with M = Cu, Ni, Co and X = Br, Cl, I), which can be exfoliated to 2D flakes. We demonstrate the effectiveness of our method using CuBr as an example, which forms large layered crystals.
View Article and Find Full Text PDFDefect centers in wide-band-gap crystals have garnered interest for their potential in applications among optoelectronic and sensor technologies. However, defects embedded in highly insulating crystals, like diamond, silicon carbide, or aluminum oxide, have been notoriously difficult to excite electrically due to their large internal resistance. To address this challenge, we realized a new paradigm of exciting defects in vertical tunneling junctions based on carbon centers in hexagonal boron nitride (hBN).
View Article and Find Full Text PDF