Computer assisted biofabrication of fully functional living tissue for regenerative medicine involves generation of complex three-dimensional constructs consisting of living cells and biomaterials. Laser BioPrinting (LaBP) based on laser-induced forward-transfer provides unique possibilities for the deposition of different living cells and biomaterials in a well-defined 3D structure. LaBP can be applied to generate scaffold-free 3D cell systems through a layer-by-layer technique by combining cell solutions with materials that are able to form stable gels.
View Article and Find Full Text PDFDue to its biological significance, cell adhesion to biomaterial surfaces or scaffolds is the key step in biomedical applications. Here, we describe two sensitive and facile methods that quantify the kinetic and mechanic properties of the entire cell attachment process characterized by two parameters: Adhesion Time T(Ad) and Adhesion Force F(Ad). We demonstrate that both methods can be applied to any adherent cell type (e.
View Article and Find Full Text PDFFor the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure.
View Article and Find Full Text PDFRecent study showed that mesenchymal stem cells (MSC) could inhibit apoptosis of endothelial cells in hypoxic condition, increase their survival, and stimulate the angiogenesis process. In this project we applied Laser-Induced-Forward-Transfer (LIFT) cell printing technique and prepared a cardiac patch seeded with human umbilical vein endothelial cells (HUVEC) and human MSC (hMSC) in a defined pattern for cardiac regeneration. We seeded HUVEC and hMSC in a defined pattern on a Polyester urethane urea (PEUU) cardiac patch.
View Article and Find Full Text PDFUtilization of living cells for therapies in regenerative medicine requires a fundamental understanding of the interactions between different cells and their environment. Moreover, common models based on adherent two-dimensional cultures are not appropriate to simulate the complex interactions that occur in a three-dimensional (3D) cell-microenvironment in vivo. In this study, we present a computer-aided method for the printing of multiple cell types in a 3D array using laser-assisted bioprinting.
View Article and Find Full Text PDF