Publications by authors named "M Grapow"

Coronary artery bypass grafting (CABG) is and continues to be the preferred revascularization strategy in patients with multivessel disease. Graft selection has been shown to influence the outcomes following CABG. During the last almost 60 years saphenous vein grafts (SVG) together with the internal mammary artery have become the standard of care for patients undergoing CABG surgery.

View Article and Find Full Text PDF

Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo.

View Article and Find Full Text PDF

Surgical revascularization is the gold standard in most cases of complex coronary artery disease. For coronary artery bypass grafting, autologous grafts are state-of-the-art due to their long-term patency. A non-negligible amount of patients lack suitable bypass material as a result of concomitant diseases or previous interventions.

View Article and Find Full Text PDF

Background: In isolated mitral valve regurgitation general consensus on surgery is to favor repair over replacement excluding rheumatic etiology or endocarditis. If concomitant aortic valve replacement is performed however, clinical evidence is more ambiguous and no explicit guidelines exist on the choice of mitral valve treatment. Both, double valve replacement (DVR) and aortic valve replacement in combination with concomitant mitral valve repair (AVR + MVP) have been proven to be feasible procedures.

View Article and Find Full Text PDF

Background: In Switzerland, long-term circulatory support programs have been limited to heart transplant centers. In 2014, to improve the management of patients with end-stage heart failure not eligible for transplantation, we implemented a left ventricular assist device (LVAD) program for destination therapy at the University Hospital of Basel.

Methods: We described the program set-up with practical aspects.

View Article and Find Full Text PDF