Publications by authors named "M Granger-Schnarr"

The LexA protein is part of a large family of prokaryotic transcriptional repressors that contain an amino-terminal DNA binding domain and a carboxy-terminal dimerization domain. These domains are separated by a linker or hinge region, which is generally considered to be rather flexible and unconstrained. So far, no structure of any of the full-length repressors is available.

View Article and Find Full Text PDF

Interactions between proteins affect a wide variety of biological processes, such as signal transduction and control of gene expression. In order to facilitate the study of protein-protein interactions we have developed a new method for specifically detecting the heterodimerization of two heterologous proteins in the bacterium Escherichia coli. The assay is based on the simultaneous use of protein fusions with an altered specificity and a wild-type LexA repressor DNA-binding domain.

View Article and Find Full Text PDF

The mammalian Fos and Fos-related proteins are unable to form homodimers and to bind DNA in the absence of a second protein, like c-Jun for example. In order to study the implications of hydrophobic point mutations in the c-Fox leucine zipper on DNA binding of the entire c-Fos protein, we have constructed and purified a set of Fos mutant proteins harboring one or several isoleucine or leucine residues in the five Fos zipper a positions. We show that a single point mutation in the hydrophobic interface of the c-Fos leucine zipper enables the c-Fos mutant protein to bind specifically to an oligonucleotide duplex harboring the TRE consensus sequence TGA(C/G)TCA.

View Article and Find Full Text PDF