Publications by authors named "M Grajcar"

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al.

View Article and Find Full Text PDF

We demonstrate amplification of a microwave signal by a strongly driven two-level system in a coplanar waveguide resonator. The effect, similar to the dressed-state lasing known from quantum optics, is observed with a single quantum system formed by a persistent current (flux) qubit. The transmission through the resonator is enhanced when the Rabi frequency of the driven qubit is tuned into resonance with one of the resonator modes.

View Article and Find Full Text PDF

An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.

View Article and Find Full Text PDF

We compare the results of ground state and spectroscopic measurements carried out on superconducting flux qubits which are effective two-level quantum systems. For a single qubit and for two coupled qubits we show excellent agreement between the parameters of the pseudospin Hamiltonian found using both methods. We argue that by making use of the ground state measurements the Hamiltonian of N coupled flux qubits can be reconstructed as well at temperatures smaller than the energy level separation.

View Article and Find Full Text PDF

We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit-coupler interaction. The third junction gives the coupler a nontrivial current-flux relation; its derivative (i.

View Article and Find Full Text PDF