Publications by authors named "M Gracia Garcia-Martin"

Glioblastoma continues to pose a major global health challenge due to its incurable nature. The need for new strategies to combat this devastating tumor is therefore paramount. Nanotechnology offers unique opportunities to develop innovative and more effective therapeutic approaches.

View Article and Find Full Text PDF

The development of biocompatible hybrid nanosystems for advanced functional applications presents significant challenges to the research community. Key obstacles include the poor solubility of these nanosystems in water and the difficulty of precisely controlling their nanostructure dimensions and composition. A promising approach to overcoming these challenges is the self-assembly of surfactant-based building blocks into well-ordered hybrid nanostructures.

View Article and Find Full Text PDF

Research on high-field magnetic resonance imaging (HF-MRI) has been increased in recent years, aiming to improve diagnosis accuracy by increasing the signal-to-noise ratio and hence image quality. Conventional contrast agents (CAs) have important limitations for HF-MRI, with the consequent need for the development of new CAs. Among them, the most promising alternatives are those based on Dy or Ho compounds.

View Article and Find Full Text PDF

Cell therapy is a promising strategy for treating neurological pathologies but requires invasive methods to bypass the blood-brain barrier restrictions. The nose-to-brain route has been presented as a direct and less invasive alternative to access the brain. The primary limitations of this route are low retention in the olfactory epithelium and poor cell survival in the harsh conditions of the nasal cavity.

View Article and Find Full Text PDF

The escalating challenges of Helicobacter pylori-induced gastric complications, driven by rising antibiotic resistance and persistent cancer risks, underscore the demand for innovative therapeutic strategies. This study addresses this urgency through the development of tailored semi-interpenetrating polymer networks (semi-IPN) serving as gastroretentive matrices for amoxicillin (AMOX). They are biodegradable, absorb significant volume of simulated gastric fluid (swelling index > 360 %) and exhibit superporous microstructures, remarkable mucoadhesion, and buoyancy.

View Article and Find Full Text PDF