The use of second-generation antipsychotic (SGA) medications in pediatric patients raises concerns about potential long-term adverse outcomes. The current study evaluated the long-term effects of treatment with risperidone or olanzapine on body weight, caloric intake, serum insulin, blood glucose, and metabolism-associated gene expression in C57Bl/6J female mice. Compared to mice treated with vehicle, female mice treated with risperidone or olanzapine gained weight at higher rates during treatment and maintained higher body weights for months following treatment cessation.
View Article and Find Full Text PDFThe Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among DoD organizations and to facilitate resource, material and information sharing among consortium members, which includes collaborators in academia and industry. The 2023 annual symposium was a hybrid meeting held in Washington DC on 26-27 September 2023 concurrent with the virtual attendance, with oral and poster presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) Environmental Microbiome Characterization; 2) Microbiome Analysis; 3) Human Microbiome Characterization; 4) Microbiome Engineering; and 5) In Vitro and In Vivo Microbiome Models. Collectively, the symposium provided an update on the scope of current DoD and DoD-affiliated microbiome research efforts and fostered collaborative opportunities.
View Article and Find Full Text PDFAdverse childhood experiences (ACEs) are common and can impact health across the life course. Thus, it is essential for professionals in child- and family-serving roles, including pediatric and adult primary care clinicians, to understand the health implications of childhood adversity and trauma and respond appropriately. Screening for ACEs in health care settings has received attention as a potential approach to ACEs identification and response.
View Article and Find Full Text PDFResearch into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons.
View Article and Find Full Text PDF