During early embryogenesis, fast mitotic cycles without interphase lead to a decrease in cell size, while scaling mechanisms must keep cellular structures proportional to cell size. For instance, as cells become smaller, if the position of nuclear envelope reformation (NER) did not adapt, NER would have to occur beyond the cell boundary. Here we found that NER position in anaphase scales with cell size via changes in chromosome motility, mediated by cytoplasmic flows that themselves scale with cell size.
View Article and Find Full Text PDFThe phenomenal diversity of neuronal types in the central nervous system is achieved in part by the asymmetric division of neural precursors. In zebrafish neural precursors, asymmetric dispatch of Sara endosomes (with its Notch signaling cargo) functions as fate determinant which mediates asymmetric division. Here, we found two distinct pools of neural precursors based on Sara endosome inheritance and spindle-microtubule enrichment.
View Article and Find Full Text PDFThe control of cell shape during cytokinesis requires a precise regulation of mechanical properties of the cell cortex. Only few studies have addressed the mechanisms underlying the robust production of unequal-sized daughters during asymmetric cell division. Here we report that unequal daughter-cell sizes resulting from asymmetric sensory organ precursor divisions in Drosophila are controlled by the relative amount of cortical branched Actin between the two cell poles.
View Article and Find Full Text PDFThe transforming growth factor-β (TGF-β)-type morphogens are conserved throughout the animal kingdom. TGF-β-type molecules form spatial concentration gradients whose length scales with the size of growing, developing organs. Scaling of these morphogens can also be mediated by death, adjusting the size of the tissue to the range of the gradient.
View Article and Find Full Text PDFDuring development, morphogen gradients encode positional information to pattern morphological structures during organogenesis. Some gradients, like that of Dpp in the fly wing, remain proportional to the size of growing organs-that is, they scale. Gradient scaling keeps morphological patterns proportioned in organs of different sizes.
View Article and Find Full Text PDF