The initially surprising observation that cocaine retains its rewarding effects in dopamine transporter (DAT) knockout (KO) mice led our laboratory to examine the effects of deletion of other monoaminergic genes on cocaine reward. Our initial approach to this problem was to combine DAT KO mice with serotonin transporter (SERT) KO mice to make combined DAT/SERT KO mice. The combination of these knockouts eliminates cocaine reward as assessed in the conditioned place preference (CPP) paradigm.
View Article and Find Full Text PDFThe mu-opioid receptor (OPRM1) is expressed in brain regions implicated in reward and locomotor processes. Reduced reward, not only from opiates, but also from several other abused substances has been observed in mice with lifelong deletions of the OPRM1 gene. To further define the roles of mu-opioid receptors in psychostimulant actions, cocaine psychomotor stimulant and rewarding effects were examined in wild-type (WT), heterozygous and homozygous mu-opioid receptor knockout mice.
View Article and Find Full Text PDFHomozygous mu-opioid receptor (MOR) knockout (KO) mice developed on a chimeric C57B6/129SV background lack morphine-induced antinociception, locomotion and reward. Therefore it appears that MOR largely mediates these morphine actions. However, one factor that could affect the extent of knockout deficits in morphine-induced behavior is the genetic background against which the gene deletion is expressed.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) affects the development of brain neurotransmitter systems, including dopamine and serotonin systems that are important for cocaine's rewarding and locomotor stimulatory properties. Human genomic markers within or near the BDNF locus have been linked to or associated with substance abuse. Post-mortem human brain specimens reveal individual differences in the levels of BDNF mRNA and in mRNA splicing patterns.
View Article and Find Full Text PDF