Publications by authors named "M Giersig"

This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix had a positive effect on improving selected properties of the composites; the beneficial effect could be enhanced by introducing a green modifier in the form of an extract.

View Article and Find Full Text PDF

The impact of Artificial Intelligence (AI) is rapidly expanding, revolutionizing both science and society. It is applied to practically all areas of life, science, and technology, including materials science, which continuously requires novel tools for effective materials characterization. One of the widely used techniques is scanning probe microscopy (SPM).

View Article and Find Full Text PDF

The slow photon effect in inverse opal photonic crystals represents a promising approach to manipulate the interactions between light and matter through the design of material structures. This study introduces a novel ordered inverse opal photonic crystal (IOPC) sensitized with perovskite quantum dots (PQDs), demonstrating its efficacy for efficient visible-light-driven H generation via water splitting. The rational structural design contributes to enhanced light harvesting.

View Article and Find Full Text PDF

Transparent electrodes are vital for optoelectronic devices, but their development has been constrained by the limitations of existing materials such as indium tin oxide (ITO) and newer alternatives. All face issues of robustness, flexibility, conductivity, and stability in harsh environments. Addressing this challenge, we developed a flexible, low-cost titanium nitride (TiN) nanomesh transparent electrode showcasing exceptional acid-alkali resistance.

View Article and Find Full Text PDF

Two-dimensional polystyrene sphere opals are important materials for nanotechnology applications and fundamental nanoscience research. They are a facile and inexpensive nanofabrication tool, but the quality factor of these opals has drastic differences between reports. Additives like ethanol, ions, and organic molecules in the aqueous particle spreading solution are known to affect the quality factor and growth efficiency of the produced opals.

View Article and Find Full Text PDF