Publications by authors named "M Gidding"

Article Synopsis
  • All-optical methods for switching magnetization could significantly enhance data-storage technologies by improving recording speed and energy efficiency.
  • Research indicates that optical pulses ranging from 12 to 30 THz can effectively drive magnetic switching in yttrium-iron-garnet films if the frequency matches specific phonon characteristics.
  • The study reveals that below 10 THz, the phononic mechanism behind magnetic switching becomes more intricate, particularly influenced by phonon modes associated with the substrate, complicating the process compared to higher frequencies.
View Article and Find Full Text PDF

Magnetic materials play a vital role in energy-efficient data storage technologies, combining very fast switching with long-term retention of information. However, it has been shown that, at very short time scales, magnetisation dynamics become chaotic due to internal instabilities, resulting in incoherent spin-wave excitations that ultimately destroy magnetic ordering. Here, contrary to expectations, we show that such chaos gives rise to a periodic pattern of reversed magnetic domains, with a feature size far smaller than the spatial extent of the excitation.

View Article and Find Full Text PDF

Electromagnetic radiation in the mid- to far-infrared spectral range represents an indispensable tool for the study of numerous types of collective excitations in solids and molecules. Short and intense pulses in this terahertz spectral range are, however, difficult to obtain. While wide wavelength-tunability is easily provided by free-electron lasers, the energies of individual pulses are relatively moderate, on the order of microjoules.

View Article and Find Full Text PDF

Gold nanocages represent a new class of nanomaterials with compact size and tunable optical properties for biomedical applications. They exhibit strong light absorption in the near-infrared region in which light can penetrate deeply into soft tissue. After PEGylation, the Au nanocages can be passively delivered to tumors in animals.

View Article and Find Full Text PDF

Gold nanocages with localized surface plasmon resonance peaks in the near-infrared region exhibited a broad two-photon photoluminescence band extending from 450 to 650 nm when excited by a Ti:sapphire laser at 800 nm. The bright luminescence makes it possible to explore the use of Au nanocages as a new class of optical imaging agents for two-photon microscopy. In this work, we have demonstrated the use of two-photon microscopy as a convenient tool to directly examine the uptake of antibody-conjugated and PEGylated Au nanocages by U87MGwtEGFR cells.

View Article and Find Full Text PDF