Publications by authors named "M Gharanfoli"

The ability to cryopreserve oocytes without ultrastructural injury has been a concern in the development and use of methods to preserve female reproduction. The stability of the cell membrane must be preserved to reduce the damage caused by ice crystals during vitrification. One approach that has been explored is the use of static magnetic fields (SMFs), which are believed to influence cell membrane stability.

View Article and Find Full Text PDF

Objectives: Superparamagnetic iron oxide nanoparticles (SPIONs) have been considered promising non-invasive imaging tools in medicine. However, their high surface energy leads to NPs aggregation, while non-targeted SPIONs can cause cytotoxic effects on normal cells. In this work, we evaluated the potential of polyethyleneimine (PEI)-SPIONs targeted by PNC-27 peptide as a double targeting agent throughout early cancer diagnosis.

View Article and Find Full Text PDF

In the early 2000s, the Iranian stem cell research and technology had a relatively strong start that benefited from religious blessings, political and public support, as well as scientific endeavors on the part of non-governmental and public research organizations and universities. Later on, it developed a dynamic niche market of public, private start-up, and spin-off companies and organizations that pioneered in the Islamic world in terms of ISI papers, clinical trials, and cell therapy. However, at present, it faces new challenges stemming from the insufficient finance and a comprehensive law and regulation structure to keep its momentum.

View Article and Find Full Text PDF

Here, we report on the effect of aspirin (ASA), on the binding parameters with regard to bilirubin (BR) to human serum albumin (HSA). Two different classes of binding sites were detected. Binding to the first and second classes of the binding sites was dominated by hydrophobic forces in the case of HSA-BR, whereas in the case of the ternary system, binding to the first and second classes of the binding sites was achieved by electrostatic interaction.

View Article and Find Full Text PDF

The effect of stabilizing and destabilizing salts on the catalytic behavior of ribonuclease A (RNase A) was investigated at pH 7.5 and 25 degrees C, using spectrophotometric, viscometric and molecular dynamic methods. The changes in the distance between N(epsilon2) of His(12) and N(delta1) of His(119) at the catalytic center of RNase A upon the addition of sodium sulfate, sodium hydrogen sulfate and sodium thiocyanate were evaluated by molecular dynamic methods.

View Article and Find Full Text PDF