The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing.
View Article and Find Full Text PDFThe adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq).
View Article and Find Full Text PDFThe adult hippocampus continuously generates new cohorts of immature neurons with increased excitability and plasticity. The window for the expression of those unique properties in each cohort is determined by the time required to acquire a mature neuronal phenotype. Here, we show that local network activity regulates the rate of maturation of adult-born neurons along the septotemporal axis of the hippocampus.
View Article and Find Full Text PDF