Histone deacetylases (HDACs) have emerged as powerful epigenetic modifiers of histone/non-histone proteins via catalyzing the deacetylation of ε--acetyl lysines. The dysregulated activity of these Zn-dependent hydrolases has been broadly implicated in disease, notably cancer. Clinically, the recurring dose-limiting toxicities of first-generation HDACi sparked a paradigm shift toward safer isoform-specific molecules.
View Article and Find Full Text PDFWe previously demonstrated that engagement of cadherins, cell to cell adhesion molecules, triggers a dramatic increase in levels and activity of the Rac/Cdc42 small GTPases, which is followed by secretion of IL6 family cytokines and activation of their common receptor, gp130, in an autocrine manner. This results in phosphorylation of the Signal Transducer and Activator of Transcription-3 (Stat3) on tyrosine-705, which then dimerizes, migrates to the nucleus, and activates transcription of genes involved in cell division and survival. In the present report we demonstrate that, in mouse Balb/c3T3 fibroblasts, mutationally activated Src also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers the Stat3-ptyr705 increase.
View Article and Find Full Text PDFHistone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance.
View Article and Find Full Text PDFAdhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways.
View Article and Find Full Text PDF