We report the observation of an anomalous polarization dependent process in an isotropic glass induced by long time stationary irradiation of a high repetition rate near-infrared femtosecond laser. Two distinctive types of polarization dependent microstructures were induced at different irradiation stages. At early stage (a few seconds), a dumbbell-shaped structure elongated perpendicularly to the laser polarization formed at the top of the modified region, which was later erased by further irradiation.
View Article and Find Full Text PDFWe present a novel "Top-down" strategy to design the long phosphorescent phosphors in the second biological transparency window via energy transfer. Inherence in this approach to material design involves an ingenious engineering for hybridizing the coordination networks of hosts, tailoring the topochemical configuration of dopants, and bridging a cascaded tunnel for transferring the persistent energy from traps, to sensitizers and then to acceptors. Another significance of this endeavour is to highlight a rational scheme for functionally important hosts and dopants, Cr/Nd co-doped Zn1-xCaxGa2O4 solid solutions.
View Article and Find Full Text PDFOwing to the unique mechanism of photoelectron storage and release, long persistent phosphorescence, also called long persistent luminescence or long lasting afterglow/phosphorescence, plays a pivotal role in the areas of spectroscopy, photochemistry, photonics and materials science. In recent years, more research has focused on the manipulation of the morphology, operational wavebands and persistent duration of long persistent phosphors (LPPs). These desired achievements stimulated the growing interest in designing bio-labels, photocatalysts, optical sensors, detectors and photonic devices.
View Article and Find Full Text PDFPolymeric nanofibers containing gold nanorods (GNRs) are aligned in a uniform orientation through electrospinning. The dispersive and absorptive parts of the third-order optical nonlinear optical refractive index of the composite film measured by polarization dependent z-scan method are demonstrated to be anisotropically enhanced. Anisotropic optical response of the aligned GNRs and its connection with the ultrafast electron dynamics are discussed in light of the results of resonant femtosecond pump-probe experiments.
View Article and Find Full Text PDFA simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%.
View Article and Find Full Text PDF