Publications by authors named "M Garneau"

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Peatlands cover approximately 12% of the Canadian landscape and play an important role in the carbon cycle through their centennial- to millennial-scale storage of carbon under waterlogged and anoxic conditions. In recognizing the potential of these ecosystems as natural climate solutions and therefore the need to include them in national greenhouse gas inventories, the Canadian Model for Peatlands module (CaMP v. 2.

View Article and Find Full Text PDF

Objective: To examine agreement between parental reports of head injury and evidence of head injury in medical records and to compare these two measures in predicting early conduct disorder (CD).

Design And Setting: Parent survey data was compared with records of child head injury from the National Health Services Register (Régie de l'assurance maladie du Québec, RAMQ) administrative database.

Participants: Children ( = 685) ages 6-9 with and without CD.

View Article and Find Full Text PDF

Diacylglycerols (DAGs) are anabolic precursors to membrane lipid and storage triacylglycerol biosynthesis, metabolic intermediates of lipid catabolism, and potent cellular signaling molecules. The different DAG molecular species that accumulate over development or in different tissues reflect the changing aspects of cellular lipid metabolism. Consequently, an accurate determination of DAG molecular species in biological samples is essential to understand various metabolic processes and their diagnostic relevance.

View Article and Find Full Text PDF

Generating new strategies to improve plant performance and yield in crop plants becomes increasingly relevant with ongoing and predicted global climate changes. E3 ligases that function as key regulators within the ubiquitin proteasome pathway often are involved in abiotic stress responses, development, and metabolism in plants. The aim of this research was to transiently downregulate an E3 ligase that uses BTB/POZ-MATH proteins as substrate adaptors in a tissue-specific manner.

View Article and Find Full Text PDF