Background And Purpose: Simulation-free radiotherapy, where diagnostic imaging is used for treatment planning, improves accessibility of radiotherapy for eligible palliative patients. Combining this pathway with online adaptive radiotherapy (oART) may improve accuracy of treatment, expanding the number of eligible patients. This study evaluated the adaptive process duration, plan dose volume histogram (DVH) metrics and geometric accuracy of a commercial cone-beam computed tomography (CBCT)-guided oART system for simulation-free, palliative radiotherapy.
View Article and Find Full Text PDFBackground And Purpose: Deep inspiration breath-hold (DIBH) is a technique that is widely utilised to spare the heart and lungs during breast radiotherapy. In this study, a method was developed to validate directly the intrafraction accuracy of DIBH during breast volumetric modulated arc therapy (VMAT) via internal chest wall (CW) monitoring.
Materials And Methods: In-house software was developed to automatically extract and compare the treatment position of the CW in cine-mode electronic portal image device (EPID) images with the planned CW position in digitally reconstructed radiographs (DRR) for breast VMAT treatments.
Real-time target position verification during pancreas stereotactic body radiation therapy (SBRT) is important for the detection of unplanned tumour motions. Fast and accurate fiducial marker segmentation is a Requirement of real-time marker-based verification. Deep learning (DL) segmentation techniques are ideal because they don't require additional learning imaging or prior marker information (e.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
April 2020
Radiological water equivalence of solid phantoms used for radiotherapy is often desired, but is non-trivial to achieve across the range of therapeutic energies. This study evaluated the water equivalence of a new solid phantom material in beam qualities relevant to radiotherapy applications. In-phantom measured depth distributions were compared to that in water to assess the relative attenuation and scatter characteristics of the material.
View Article and Find Full Text PDFPurpose: Dynamic dosimaging is a concept whereby a detector in motion is tracked with magnetic resonance imaging (MRI) to validate the amount and position of dose in a radiation therapy treatment on an MRI-linac. This work takes steps toward the realization of dynamic dosimaging with the novel high resolution silicon array detector: MagicPlate-512 (M512). The performance of the M512 was assessed in a 1.
View Article and Find Full Text PDF