Publications by authors named "M Gamza"

The Mott metal-insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS.

View Article and Find Full Text PDF

We present a simple strategy to generate a family of carbon dots/iron oxide nanoparticles (C/Fe-NPs) that relies on the thermal decomposition of iron (III) acetylacetonate in the presence of a highly fluorescent carbon-rich precursor (derived via thermal treatment of ethanolamine and citric acid at 180 °C), while polyethylene glycol serves as the passivation agent. By varying the molar ratio of the reactants, a series of C/Fe-NPs have been synthesized with tuneable elemental composition in terms of C, H, O, N and Fe. The quantum yield is enhanced from 6 to 9% as the carbon content increases from 27 to 36 wt%, while the room temperature saturation magnetization is improved from 4.

View Article and Find Full Text PDF

Sharp superconducting transition anomalies observed in a new generation of single crystals establish that bulk superconductivity is intrinsic to high purity YFe_{2}Ge_{2}. Low temperature heat capacity measurements suggest a disorder and field dependent residual Sommerfeld coefficient, consistent with disorder-induced in-gap states as expected for a sign-changing order parameter. The sevenfold reduction in disorder scattering in these new crystals to residual resistivities ≃0.

View Article and Find Full Text PDF

Among intermetallic compounds, ternary phases with the simple stoichiometric ratio 1:1:1 form one of the largest families. More than 15 structural patterns have been observed for several hundred compounds constituting this group. This, on first glance unexpected, finding is a consequence of the complex mechanism of chemical bonding in intermetallic structures, allowing for large diversity.

View Article and Find Full Text PDF