Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.
View Article and Find Full Text PDFObjective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.
Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.
Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.
Purpose: developing customized titanium specimens, with innovative surfaces, is a suitable strategy to overcome implant failure. Additionally, a faster and efficient osteogenic commitment assists tissue regeneration. To investigate the interplay between inflammation and differentiation upon implantation, Dental Pulp Stem Cells (DPSCs) were cultured on 3D-printed titanium owning an internal open cell form, administering osteogenic factors by a liposomal formulation (LipoMix) compared to traditional delivery of differentiation medium (DM).
View Article and Find Full Text PDFMacrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5'-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions.
View Article and Find Full Text PDF