The precipitation-hardenable nickel-based superalloy Rene 41 exhibits remarkable mechanical characteristics and high corrosion resistance at high temperatures, properties that allow it to be used in high-end applications. This research paper presents findings on the influence of thermal shocks on its microstructure, hardness, and thermal diffusivity at temperatures between 700 and 1000 °C. Solar energy was used for cyclic thermal shock tests.
View Article and Find Full Text PDFThis study aims to investigate the vegetative buds from (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS.
View Article and Find Full Text PDFIn fusion reactors, such as ITER or DEMO, the plasma used to generate nuclear reactions will reach temperatures that are an order of magnitude higher than in the Sun's core. Although the plasma is not supposed to be in contact with the reactor walls, a large amount of heat generated by electromagnetic radiation, electrons and ions being expelled from the plasma will reach the plasma-facing surface of the reactor. Especially for the divertor part, high heat fluxes of up to 20 MW/m are expected even in normal operating conditions.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2022
Green chemistry is a pharmaceutical industry tool, which, when implemented correctly, can lead to a minimization in resource consumption and waste. An aqueous extract of L. was employed for the efficient and rapid synthesis of silver/gold particle nanostructures via an inexpensive, nontoxic and eco-friendly procedure.
View Article and Find Full Text PDFSmall multilayered laminated samples consisting of stacks of W (or K-doped W) foils without an interlayer or with interlayers from Cu, V, and Ti were exposed to a pulsed electron beam with an energy of 6 MeV in several irradiation sessions. All samples maintained their macroscopic integrity, suggesting that the W-metal laminate concept is compatible with high heat flux applications. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after each irradiation session.
View Article and Find Full Text PDF