Publications by authors named "M Gajendiran"

Four new heteroleptic silver(I) complexes with the general formula [Ag(L)(nap)] (-), where L =  2-(1-(4-substitutedphenyl)ethylidene)hydrazinecarbothioamide and nap = naproxen, have been synthesized and characterized. The geometric parameters determined from density functional theory and UV-Vis studies indicate distorted tetrahedral geometry around silver(I) ion. Fourier transform infrared (FT IR) spectra evidenced asymmetric bidentate coordination mode of carboxyl oxygen atoms of naproxen with silver(I) ion.

View Article and Find Full Text PDF

Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments.

View Article and Find Full Text PDF

Poly(ethylene arginyl aspartate diglyceride) (PEAD) polycation is widely used to prepare coacervate particles by electrostatic complexation with an anionic heparin (HEP) in aqueous environments, for controlled release of therapeutic proteins. However, coacervate complexes aggregate randomly due to particle-particle charge interactions. Herein, a new term "coacersome" is introduced to represent a stable polyplex formed by complexation of mPEGylated PEAD and HEP.

View Article and Find Full Text PDF

Eight heteroleptic nickel(II) and copper(II) complexes of the type [M(L)(nap)] (-), where L = 2-(1-(4-substitutedphenyl)ethylidene)hydrazinecarbothioamide, nap = naproxen, and M = Ni(II) or Cu(II), have been synthesized and characterized. UV-vis and EPR spectral studies showed distorted octahedral geometry around metal(II) ions. The cyclic voltammogram of complexes - displayed an irreversible one-electron transfer process in the cathodic region ( = -0.

View Article and Find Full Text PDF

Background: Surface functionalization of gold nanoparticles (AuNPs) has emerged as a promising field of research with enormous biomedical applications. The folate (FA)-attached polymer-gold nanoconjugates play vital role in targeting the cancer cells.

Methods: AuNPs were synthesized by using di- or tri-carboxylate-polyethylene glycol (PEG) polymers, including citrate-PEG (CPEG), malate-PEG (MAP), and tartrate-PEG (TAP), as a reducing and stabilizing agent.

View Article and Find Full Text PDF