Br J Haematol
January 2025
VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.
View Article and Find Full Text PDFThe molecular diversity of Epstein-Barr virus (EBV) is defined by mutations in specific EBV genes and has been insufficiently studied in infectious mononucleosis (IM). The aim of this study was to determine all variations of the EBV latency genes EBNA-1, EBNA-2 and LMP-1 in pediatric patients with EBV-associated IM in Croatia, including previously defined SNPs and indels as well as previously undocumented polymorphisms. The vast majority of EBV isolates (71/72) were determined as EBV type 1 while EBNA-1 genes were classified exclusively as previously defined EBNA-1 prototypes, with 22/72 sequences categorized as P-Ala and 50/72 sequences as P-Thr.
View Article and Find Full Text PDFObjective: To co-design support strategies to enable sustainable, healthy, affordable food provision, including waste mitigation practices, in Australian Early Childhood Education and Care (ECEC) settings.
Design: Based on the co-design IDEAS framework (Ideate, DEsign, Assess & Share), this co-design process involved iterative interviews and focus groups with ECEC centre staff and workshops with Nutrition Australia. Interview and workshop themes were coded to the Theoretical Domains Framework (TDF) to develop initial prototypes for support strategies that were further developed and refined in focus groups.
The recognition of B-cell prolymphocytic leukemia (B-PLL) as a separate entity is controversial based on the current classification systems. Here, we analyzed the DNA methylome of a cohort of 20 B-PLL cases diagnosed according to the guidelines of the International Consensus Classification/Fourth revised edition of the World Health Organization Classification, and compared them with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), splenic marginal zone lymphoma (SMZL), and normal B-cell subpopulations. Unsupervised principal component analyses suggest that B-PLL is epigenetically distinct from CLL, MCL, and SMZL, which is further supported by robust differential methylation signatures in B-PLL.
View Article and Find Full Text PDF