Publications by authors named "M G Rittig"

The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols.

View Article and Find Full Text PDF

We have investigated the response of primary human meningothelial cells to Neisseria meningitidis. Through a transcriptome analysis, we provide a comprehensive examination of the response of meningothelial cells to bacterial infection. A wide range of chemokines are elicited which act to attract and activate the main players of innate and adaptive immunity.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a major component of the external leaflet of bacterial outer membranes, key pro-inflammatory factor and an important mediator of host-pathogen interactions. In host cells it activates the complement along with a pro-inflammatory response via a TLR4-mediated signalling cascade and shows preference for cholesterol-containing membranes. Here, we use solid state (13)C and (31)P MAS NMR to investigate the interactions of LPS from three bacterial species, Brucella melitensis, Klebsiella pneumoniae and Escherichia coli, with mixed lipid membranes, raft models.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a major constituent of bacterial outer membranes where it makes up the bulk of the outer leaflet and plays a key role as determinant of bacterial interactions with the host. Membrane-free LPS is known to activate T-lymphocytes through interactions with Toll-like receptor 4 via multiprotein complexes. In the present study, we investigate the role of cholesterol and membrane heterogeneities as facilitators of receptor-independent LPS binding and insertion, which underpin bacterial interactions with the host in symbiosis, pathogenesis and cell invasion.

View Article and Find Full Text PDF

In addition to the possible role of Acanthamoeba as an evolutionary precursor of pathogenicity in microbial pathogens, it has been suggested that intracellular bacteria or other microbial endosymbionts may also enhance the pathogenicity of Acanthamoeba. Using transmission electron microscopy, polymerase chain reaction and simple culturing, our findings did not reveal any apparent evidence of microbial presence intracellularly of a recently recovered clinical isolate of Acanthamoeba. Based on these findings, it is tempting to speculate that the virulence of Acanthamoeba may not be attributed to the pathogenicity of the endosymbiont alone.

View Article and Find Full Text PDF