Publications by authors named "M G Polak"

Background: The role of a prothrombotic state in atrial fibrillation (AF) progression to permanent arrythmia (PerAF) is unclear. Formation of denser and poorly lysable fibrin clots has been observed in AF patients also with sinus rhythm in association with higher stroke risk. We investigated whether altered fibrin clot properties and other prothrombotic state markers may contribute to AF transition to PerAF.

View Article and Find Full Text PDF

Context: Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and is chiefly caused by thyroid dysgenesis (CHTD). The inheritance mode of the disease remains complex.

Objectives: Gain insight into the inheritance mode of CHTD.

View Article and Find Full Text PDF

Background: Transition from paediatric to adult healthcare is a turning point for patients with Type 1 diabetes (T1D). A gradual coordinated process connecting paediatric and adult healthcare providers may improve adherence to adult follow-up.

Aims: To describe a transition process developed jointly by paediatric and adult diabetology units and compare patients progressing or not to follow-up in adult care setting.

View Article and Find Full Text PDF

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.

View Article and Find Full Text PDF

Addressing the demand for bone substitutes, tissue engineering responds to the high prevalence of orthopedic surgeries worldwide and the limitations of conventional tissue reconstruction techniques. Materials, cells, and growth factors constitute the core elements in bone tissue engineering, influencing cellular behavior crucial for regenerative treatments. Scaffold design, including architectural features and porosity, significantly impacts cellular penetration, proliferation, differentiation, and vascularization.

View Article and Find Full Text PDF