Publications by authors named "M G Operti"

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed.

View Article and Find Full Text PDF

The prevalence of Beckwith-Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART-BWSp patients reported so far display imprinting center 2 loss-of-methylations (IC2-LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART-BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART-BWSp patients previously described in literature, and with the general population of children born from ART.

View Article and Find Full Text PDF

Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable.

View Article and Find Full Text PDF

Nanomedicines based on poly(lactic-co-glycolic acid) (PLGA) carriers offer tremendous opportunities for biomedical research. Although several PLGA-based systems have already been approved by both the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), and are widely used in the clinics for the treatment or diagnosis of diseases, no PLGA nanomedicine formulation is currently available on the global market. One of the most impeding barriers is the development of a manufacturing technique that allows for the transfer of nanomedicine production from the laboratory to an industrial scale with proper characterization and quality control methods.

View Article and Find Full Text PDF