Publications by authors named "M G Martynova"

Osteoporosis is characterized by increased resorption and decreased bone formation; it is predominantly influenced by genetic factors. G-protein coupled receptors (GPCRs) play a vital role in bone homeostasis, and mutations in these genes are associated with osteoporosis. This study aimed to investigate the impact of single nucleotide polymorphism (SNP) rs1042713 in the gene, encoding the beta-2-adrenergic receptor, on osteoblastogenesis.

View Article and Find Full Text PDF

Background: Three-dimensional (3D) cell culture is widely used in various fields of cell biology. In comparison to conventional two-dimensional (2D) cell culture, 3D cell culture facilitates a more accurate replication of the in vivo microenvironment, which is essential for obtaining more relevant results. The application of 3D cell culture techniques in regenerative medicine, particularly in mesenchymal stem cell (MSC)-based research, has been extensively studied.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. They modulate key physiological functions and are required in diverse developmental processes including embryogenesis, but their role in pluripotency maintenance and acquisition during the reprogramming towards hiPSCs draws little attention. Meanwhile, it is known that more than 106 GPCRs are overexpressed in human pluripotent stem cells (hPSCs).

View Article and Find Full Text PDF

We argue for a perspective on bilingual heritage speakers as native speakers of both their languages and present results from a large-scale, cross-linguistic study that took such a perspective and approached bilinguals and monolinguals on equal grounds. We targeted comparable language use in bilingual and monolingual speakers, crucially covering broader repertoires than just formal language. A main database was the open-access RUEG corpus, which covers comparable informal vs.

View Article and Find Full Text PDF

The release of Hsp70 chaperone from tumor cells is found to trigger the full-scale anti-cancer immune response. Such release and the proper immune reaction can be induced by the delivery of recombinant Hsp70 to a tumor and we sought to explore how the endogenous Hsp70 can be transported to extracellular space leading to the burst of anti-cancer activity. Hsp70 transport mechanisms were studied by analyzing its intracellular tracks with Rab proteins as well as by using specific inhibitors of membrane domains.

View Article and Find Full Text PDF